Inferring Mixing in the SPURS Region from Volumetric Salinity Budgets

Frank Bryan
Scott Bachman
(NCAR)

Objectives

- Use budgets formulated for different control volumes to isolate different processes
- Connect the salinity budgets in the SPURS region with the larger scale context of the basin- to global-scale general circulation
- Connect the synoptic time scale observations form SPURS with OGCM space and time scales

Alternative Control Volumes

Pointwise Mixed Layer (Tom Farrar yesterday)

$$h\frac{\partial\langle S\rangle}{\partial t} = -h\langle \vec{u}\rangle \cdot \nabla\langle S\rangle - \nabla \cdot \langle \hat{\vec{u}}\hat{S}\rangle - (\langle S\rangle - S_{-h})\left(\frac{\partial h}{\partial t} + \vec{u}_{-h} \cdot \nabla h + w_{-h}\right) + (E - P)S_r - \kappa \frac{\partial S}{\partial z}\Big|_{-h}$$

Eulerian Volume (Carton & Grodsky)

$$\frac{\partial [S]}{\partial t_{\uparrow}} = -\left[\nabla_{h} \bullet \vec{u}_{h}S\right] - w_{-h}S_{-h} + (E - P)S_{r} + \left[\kappa \frac{\partial S}{\partial z}\right]_{z=-h} + \left[F_{h}\right]$$

Isohaline Bounded Volume

$$V\frac{d\langle S\rangle}{dt} + (\langle S\rangle - S_c)\frac{dV}{dt} = \iint_{S} (E - P)S dA - \iint_{B} \vec{F}_{mix} \cdot \vec{n} dA$$

Models and Data Used

Model	Horizontal Resolution	Near Surface Vertical Resolution	Surface Forcing	Assimlation
CCSM-NY	0.3° to 0.6° x 1.125°	10m	CORE Normal Year	none
CCSM-IAF	0.3° to 0.6° x 1.125°	10m	CORE Interannual (1947-2009)	none
NCEP GODAS	1/3° to 1° x 1°	10m	NCEP Reanalysis-2 (1980-2012)	3DVar (Temp. profiles + synthetic salinity)

The North Atlantic "Salt Pool"

Isohaline Salt Budget for 2009

What Processes Account for the Mixing?

$$\vec{F}_{mix} = \underbrace{\mathbb{E}_{GM}} \nabla S + \kappa (\gamma + \frac{\partial S}{\partial z})$$
Mesoscale (GM)+
Submeso (FFM)
Microscale (KPP)

CCSM-NY

Distribution of Microscale Fluxes

Mesoscale Fluxes

Interannual Variability (S=37.2)

Summary

- The net turbulent flux through the salt pool isohaline surfaces can be estimated from surface data alone
- In contrast to the warm pool, both isopycnal and diapycnal turbulent fluxes contribute to the net flux through the salt pool.
- Considerable inter-annual variability in both the surface and subsurface signatures of the salt pool even without eddies.

Questions and Next Steps

- Examine eddy resolving solutions and SPURS state estimates in this framework.
 - What time and space scales of smoothing are required to define useful control volumes?
 - Are explicit and parameterized net mesoscale fluxes of similar importance?
 - Can we reconcile the different budgets into a coherent picture of mixing in this domain?
- Salinity variance budgets in isohaline volumes as additional diagnostic of mixing.